phasing
GRIDSS2 は、片側のみが明確に決定できるブレイクポイントであるシングルブレイクエンドを明示的に報告する初めての構造的バリアントコーラーである。シングルブレイクエンドをブレイクポイントと同様に基本的なゲノムリアレンジメントシグナルとして扱うこ…
ロングリードシーケンスは、構造変異(SV)の検出やメチレーションコールに有利であることが示されている。多くの研究では、SV、メチル化、またはSNVのphasingのいずれかに焦点が当てられているが、バリアントの組み合わせによってのみ、サンプルに関する包…
ロングリード・フェーシングは、二倍体ゲノムの再構築、バリアント・コーリングの改善、メタゲノミクスにおける微生物株の解決などに用いられてきた。しかし、既存の手法では、大きな構造変化(Structural Variation: SV)によって位相差ブロックが破壊され…
2022/03/26 Hi-Cと組み合わせた論文引用、ツイート追記 Haplotype-resolved de novo assemblyは、ゲノム配列のバリエーションを研究するための究極のソリューションである。しかし、既存のアルゴリズムでは、ヘテロ接合型の対立遺伝子を1つのコンセンサスコ…
同じDNA分子上でどの突然変異が発生しているかを検出することは、その結果を予測するために不可欠である。これは、ゲノム変異のphasingによって達成することができる。それにもかかわらず、最先端のハプロタイプphasingは、現在のところ、再構成されたハプロ…
2020 7/11 図追加 2020 7/13 タイトル修正 2020 7/15 コメント追記 2021 12/23 コメント追加 2022/09/18 インストール手順修正 第三世代の1分子シーケンシングにおける最近の進歩は、非常に高いレベルの連続性と完全性を持つde novoゲノムアセンブリを可能…
2019 3/18 インストールの流れ修正 2019 3/26 誤字修正 2019 11/8 タイトル修正 ヒトゲノムは二倍体であり、すなわち、その常染色体の各々は2コピーである。これらの親のコピーは、異なる一塩基多型(SNPs)の影響を受ける。変異がどちらの染色体由来かアサ…