macでインフォマティクス

読者です 読者をやめる 読者になる 読者になる

RNA seq 其の3 ヒートマップ作成

前回k-means法でクラスタリングするところまでやった。

 

k=9の結果が以下の通り。

 

f:id:kazumaxneo:20170329161538j:plain

k=9の結果についてヒートマップを書いて見る。

全部を1つのヒートマップに書くとしんどいので、分けて書く。まずは1、2、3のデータパターンが似たものをヒートマップ化する。

 

k.meansと打つと分析結果が表示されるので、

$silinfo

$silinfo$widths

                  cluster neighbor     sil_width

CHLREDRAFT_138936       1        2  0.4642057561

CHLREDRAFT_13257        1        2  0.4273940431

CHLREDRAFT_206075       1        2  0.4219634073

CHLREDRAFT_195343       1        2  0.4197930334

CHLREDRAFT_167270       1        2  0.4180063266

CHLREDRAFT_178353       1        2  0.4158867327

CHLREDRAFT_120099       1        2  0.4109362252

と書いてあるところをテキストエディタにコピーし、エクセルに読み込む。区分けはカンマかタブ。cluster neighbor のカラムでフィルターをかけ、1,2,3のclusterだけ取り出してcsv形式で保存 (1-3.csv)。

#読み込み

csv <- read.table("1-3.csv" , header=F, sep="\t")

 

前回と同じ

csv2 <- t(csv)

csv2data <-getGenes(cuff, csv2)

csHeatmap(csv2data)

f:id:kazumaxneo:20170329180206j:plain

まだデータが多い。

 

1のクラスタだけで描いてみる。

f:id:kazumaxneo:20170329180405j:plain

ようやく見える解像度になってきた。しかしデータに問題がある可能性がある30hのデータの落ち込みで分類されたぽいクラスタ1なので、生物的な応答パターンを見えているか怪しい。30hのデータを除いてcufflinksの定量からやり直してみる。

 

 

 次回へ